Moving From Automatic To Manual Carbon Dioxide Fire Suppression Systems

Cliff Sinopoli
Exelon Nuclear
Peach Bottom Atomic Power Station
Background

- CO$_2$ Fire Suppression Systems Found At Many Plants
 - Logical Fit at a Nuclear Power Plant
 - CO$_2$ already available for generator purge
 - The original “clean” agent
 - Familiar technology
 - Inexpensive agent
 - Both Low Pressure and High Pressure Systems
 - Low Pressure systems most common
Background

• CO_2 Systems Found in Many Types of Plant Areas Including:
 - Cable Spreading Rooms
 - Diesel Generator Rooms
 - Switchgear Rooms
 - Safety Related Pump Rooms
 - Motor/Generator Set Rooms
 - Turbine/Generator Bearings
 - Fuel Oil Transfer Pump Rooms
 - Cable Vaults
Background

• Many Systems Have Automatic Actuation
 - Heat detection
 - Smoke detection (often cross zoned)

• Backup Manual Actuation Typically Provided By:
 - Pushbuttons
 - Electro-Mechanical Pneumatic Control Valves
SAFETY

- Awareness that \(\text{CO}_2 \) will create a hazardous environment in the room
 - Systems typically designed with:
 - Pre-discharge Delay Timer
 - Pre-discharge Alarms (horn and lights)
 - Signs on doors and within room
 - Tagout procedure while working in room
 - General Employee Training included locations of \(\text{CO}_2 \) protected rooms and proper precautions
 - Wintergreen or other olfactory warning
SAFETY

• Inadvertent CO_2 Systems Discharges
 - Most plants with CO_2 systems have experienced inadvertent discharges
 • Some have resulted in personnel exposure to CO_2
 • A few have come close to resulting in fatalities
 • Experience outside the commercial nuclear industry have resulted in fatalities
 - Some inadvertent discharges have resulted in equipment issues
 • TMI Unit 1 1975 discharge
SAFETY

- IN 99-05 Inadvertent Discharge of CO$_2$ FP System and Gas Migration
 - Documents several Inadvertent CO$_2$ system discharges including a fatality at a Government Nuclear Lab.
 - Identifies the concern of CO$_2$ gas migration to other plant areas and impact on plant safety.
Peach Bottom Experience

• Following IN 99-05 Developed Conceptual Design to Eliminate CO2
 - Cable Spreading Room
 - HPCI Pump Room (safety related pump)
 - Emergency Diesel Generator Rooms (4)
• Cost exceeded $1 million
 - Exelon merger put design on hold
Peach Bottom Experience

• June 2002 - Inadvertent CO_2 trip in EDG room
 - Caused by spare light bulb in panel contacting two circuit board traces creating a “manual discharge.”
 - Two operators in room at time of discharge only warning was smell of wintergreen.
 - With EDG running, horn was not heard and beacon light was on other side of engine.
Peach Bottom Experience

- All CO₂ systems had tank valves closed and declared inoperable.
- Pre-fire plans modified to allow for manual discharge.
- Training provided quarterly to fire brigade.
- Brigade drill scenarios included these rooms to address CO₂ condition.
Peach Bottom Experience

• Decision to Make All PB CO$_2$ Systems Manual Permanently
 - Requested License Amendment Request (LAR) Submitted in September 2003
 - Received Request for Additional Information, (November 2004)
 - Received Approved SER (June 2005)
 - Informed NEIL and Requested Penalty Quote
Peach Bottom Experience

- Redesigned Manual Systems
 - Discharge requires manual movement of valve (similar to EMPC). Micro switch make up initiates discharge logic
 - Cannot have an electrically initiated inadvertent discharge
 - Improved internal room warning,
 - Multiple strobe lights
 - Multiple horns
NEI CO$_2$ White Paper

- Request by NEI to Prepare Some Guidance for Making the Automatic to Manual Decision
- Provides Considerations Used at Peach Bottom
- Identifies Personnel Safety As Primary Drawback Of CO$_2$ Systems
NEI CO₂ White Paper

- Identifies Plant Areas/Rooms That Would Be Potential Candidates:
 - Rooms that are frequently occupied.
 - Rooms containing equipment that could be affected by a CO₂ discharge.
 - Rooms containing primarily fire retardant cables with no floor based combustibles for exposure.
 - Rooms that contain a single piece of equipment that would likely be rendered inoperable by the fire at the start of the fire event.
NEI CO\textsubscript{2} White Paper

• \textit{CO}_2 Change Options
 - Install another type of fire suppression system
 - Convert the automatic system to manual
 - Completely eliminate the \textit{CO}_2 system (No Suppression)
NEI CO₂ White Paper

• Install another type of fire suppression system:
 - Sprinkler systems (wet pipe or pre-action)
 • Consider drainage
 • Effect on equipment
 • Piping and head placement issues
 - Gaseous systems (Clean Agents)
 • Piping and nozzle location issues
 • Safety issues associated with specific clean agent
 - Water Mist
 • Considerations similar to sprinkler systems
NEI CO$_2$ White Paper

- Convert the automatic system to manual:
 - Modification must improve personnel safety
 - Must address potential delay in actuation
 - Equipment impacts and agent migration remain
NEI CO₂ White Paper

• No Suppression
 - Limited Applications
 • Improved Smoke Detection
 • Little or no combustible materials
 • Supported by Risk Analysis
NEI CO$_2$ White Paper

- **Compensatory Measures to Consider:**
 - Instructions for Manual Discharge in Pre-fire Plans
 - Addition fire detection
 - Additional backup suppression
 - Additional hose for stations
 - Nozzles (e.g. Coast Guard Applicators)
 - Ladders for access to cable trays
 - Thermal imaging cameras
NEI CO₂ White Paper

• **Compensatory Measures to Consider**
 - Restriction of activities within the room
 - Limits on Hot Work
 - Limits on Transient Combustibles
 - In selecting Compensatory Measures remember the objectives of Defense-in-Depth.
NEI CO$_2$ White Paper

• Role of Risk Considerations
 - Any change to the method of CO$_2$ actuation (or change in type of system) should be considered within the Fire PRA.
 - Risk Analysis can form the basis for justification of the change.
 - NFPA 805 approach would permit the consideration of a change of CO$_2$ system actuation method.
NEI CO$_2$ White Paper

- Regulatory Considerations
 - Differences in each plant’s licensing basis makes specific guidance difficult
 - Ultimately must demonstrate that the change “will not adversely affect the ability to achieve and maintain safe shutdown in the event of a fire,” (from G.L. 86-10 Standard License Condition)
 - Consult with other licensee’s that are making similar changes
 - Develop a strategy with your licensing engineers
 - Get senior management acceptance
NEI CO₂ White Paper

• Regulatory Considerations
 - Considerations:
 • Is the automatic CO₂ system needed for Appendix R compliance?
 • Was the automatic CO₂ system used to support and exemption/deviation or G.L. 86-10 evaluation?
 • Are there specific commitments for an automatic CO₂ system in the Fire Protection Safety Evaluation Report?
NEI CO$_2$ White Paper

- Vehicle for NRC Notification/Approval
 - Peach Bottom chose License Amendment Request
 - Review against NEI 96-07
 - Engineering Evaluation kept on file for inspection review
NEI CO$_2$ White Paper

• Interaction with NRC Staff
 - Peach Bottom maintained a dialogue with the NRR reviewer via phone calls
 - Invited NRR fire protection staff to the site to see configuration first hand
 - Resident Inspector kept informed of the process throughout
NEI CO$_2$ White Paper

• Summary
 - Change in actuation from automatic to manual can improve both personnel and plant safety
 - May required some plant modifications for improved safety and system performance as well as regulatory compliance
 - Be prepared to be challenged on the adequacy of a manual system in terms of fire damage and plant impact